Notes on Semantics for Brandom's Seminar

Dan Kaplan

October 26, 2022

Contents

1	Meaning as Contribution to Good Implication	2
2	Formal Details	3
	2.1 Semantics \ldots	4
	2.2 Soundness and Completeness of NM-MS	5
3	Implicational Role Entailment	6
	$3.1 \Rightarrow \text{on 3-valued and 4-value semantics}$	7
	3.1.1 Some Results:	9
4	Summary and Reflection	11

1 Meaning as Contribution to Good Implication

$$p, \Gamma_{1} \vdash \Theta_{1} \qquad \Gamma_{1} \vdash \Theta_{1}, p$$

$$p, \Gamma_{2} \vdash \Theta_{2} \qquad \Gamma_{2} \vdash \Theta_{2}, p$$

$$\vdots \qquad \vdots$$

$$p, \Gamma_{n} \vdash \Theta_{n} \qquad \Gamma_{n} \vdash \Theta_{n}, p$$

$$\vdots \qquad \vdots$$

Constraint One: implications are the basic constituents of our semantic picture. Sentential (and sub-sentential) meaning (i.e. the semantics thereof) should be reconstructed from considering the structure of implicational space

$$\mathbf{P} = \mathcal{P}(\mathcal{L})^2$$
$$\mathbb{I} \subseteq \mathbf{P}$$

Constraint Two: a sentence is only meaningful if it has a role as a premise and as a conclusion, (i.e. we must specify *two* lists). It's important that we specify two roles for at least two reasons. First, two sentences may play more-orless the same role as a premise (or as a conclusion) but play different roles as conclusions. Second, the idea that a sentence might appear as a conclusion but never as a premise (or vice-versa) is unintelligible if we understand what sentences express to be rationally related to other sentences.

$$\begin{split} \langle \{p\}, \emptyset \rangle^{\gamma} =_{df.} \{ \langle \Gamma, \Theta \rangle | p, \Gamma \vdash \Theta \}, & (p \text{ as premise}) \\ \langle \emptyset, \{p\} \rangle^{\gamma} =_{df.} \{ \langle \Gamma, \Theta \rangle | \Gamma \vdash \Theta, p \}. & (p \text{ as conclusion}) \end{split}$$

which specify the contribution that p makes as a premise and conclusion, respectively, to the goodness of implication. Putting it all together then, I use double-brackets, ' $[\cdot]$ ' to denote the contribution of p in total:

$$\llbracket p \rrbracket =_{df.} = \langle \langle \{p\}, \emptyset \rangle^{\gamma}, \langle \emptyset, \{p\} \rangle^{\gamma} \rangle.$$

We might think of this as shorthand for the contribution to good implication that p made in the lists above

- **Constraint Three:** because we are interested in meaning as "contribution to good implication", we should require extensionality *at this level*, i.e. two sentences which make *exactly* the same contribution to good implication are equivalent.
 - Basic semantic semantic constituents are implications
 - Meaning is two-sorted: contribution as premise and as conclusion
 - Equivalence/extensionality at the level of contribution to good implication
 - Constraints Two + Three give us individually necessary and jointly sufficient conditions for meaningfulness

The notions developed above allow us to express that, for example the conclusory role of the conditional comes from $\langle \{p\}, \{q\} \rangle$. While the premissory role of the disjunction is the intersection of $\langle \{p\}, \emptyset \rangle$ and $\langle \{q\}, \emptyset \rangle$.

2 Formal Details

Definition 2.1 (Inferential Space \mathbf{P} , and Good Implications \mathbb{I}). Let \mathcal{L} be our language (of potential logical complexity) For my purposes here \mathcal{L} is a propositional language, but there are natural extensions to first-order languages. An inferential space is the set of all ordered pairs of multi-sets of \mathcal{L} : $\mathbf{P} = \mathcal{P}(\mathcal{L})^2$. We call each "point" (of the form $\langle X, Y \rangle$, where $X, Y \subseteq \mathcal{L}$) an implication. Each inferential space \mathbf{P} comes with a privileged subset of implications: the good implications: $\mathbb{I} \subseteq \mathbf{P}$.

Definition 2.2 (Adjunction). There is a single associative and commutative operation on **P** called **adjunction**, ' \sqcup '. If $A = \langle \Gamma, \Theta \rangle$ and $B = \langle \Delta, \Lambda \rangle$, then

$$A \sqcup B =_{df.} \langle \Gamma \cup \Delta, \Theta \cup \Lambda \rangle.$$

We also generalize ' \sqcup ' as an operation over subsets of **P**. If $X, Y \subseteq \mathbf{P}$, then:

$$X \sqcup Y = \{ x \sqcup y | x \in X, y \in Y \}.$$

Definition 2.3 (vee). Suppose $X \subseteq \mathbf{P}$. Then:

$$X^{\curlyvee} =_{df.} \{ \langle \Delta, \Lambda \rangle \, | \, \forall \langle \Gamma, \Theta \rangle \in X \, (\langle \Gamma, \Theta \rangle \sqcup \langle \Delta, \Lambda \rangle \in \mathbb{I}) \}.$$

Definition 2.4 (Closure). A set of implications $X \subseteq \mathbf{P}$ is said to be **closed** iff $X^{\gamma\gamma} = X$.

Proposition 2.5. $(\cdot)^{\gamma\gamma}$ is a closure operation, i.e. $(\cdot)^{\gamma\gamma}$ is **extensive** $(X \subseteq X^{\gamma\gamma})$, idempotent $(X^{\gamma\gamma\gamma\gamma} = X^{\gamma\gamma})$ and monotone (if $X \subseteq Y$, then $X^{\gamma\gamma} \subseteq Y^{\gamma\gamma}$).

Definition 2.6 (Proper Inferential Role). A **proper inferential role (PIR)** is an ordered pair $\langle X, Y \rangle$ such that X and Y are each *closed*—in the sense defined above—subsets of **P** (i.e. $X^{\gamma\gamma} = X$ and $Y^{\gamma\gamma} = Y$).

Definition 2.7 (Convention). As a convention if $\llbracket A \rrbracket = \langle X, Y \rangle$ is an inferential role, then we write $\llbracket A \rrbracket_P$ to refer to X and $\llbracket A \rrbracket_C$ to refer to Y, i.e. A's premissory and conclusory roles, respectively.

2.1 Semantics

Definition 2.8 (Models). A model is a quadruple $\langle \mathcal{L}, \mathbf{P}, \mathbb{I}, \llbracket \cdot \rrbracket \rangle$ consisting of a language \mathcal{L} and inferential space over that language \mathbf{P} , a privileged set of good implications \mathbb{I} , and an interpretation function $\llbracket \cdot \rrbracket$ (to be defined next) which interprets sentences in the language as inferential roles in the model.

Definition 2.9 (Interpretation Function). An interpretation function $\llbracket \cdot \rrbracket$ maps sentences in \mathcal{L} to proper inferential roles in models. If $A \in \mathcal{L}$ is atomic, then A is interpreted as follows:

 $\llbracket A \rrbracket =_{df.} \langle \langle \{A\}, \emptyset \rangle^{\curlyvee}, \langle \emptyset, \{A\} \rangle^{\curlyvee} \rangle.$

The semantic definitions of connectives follows:

$$\begin{split} \llbracket A \& B \rrbracket &=_{df.} \langle ((\llbracket A \rrbracket_P)^{\curlyvee} \sqcup (\llbracket B \rrbracket_P)^{\curlyvee})^{\curlyvee}, \llbracket A \rrbracket_C \cap \llbracket B \rrbracket_C \rangle, \\ \llbracket A \lor B \rrbracket &=_{df.} \langle \llbracket A \rrbracket_P \cap \llbracket B \rrbracket_P, ((\llbracket A \rrbracket_C)^{\curlyvee} \sqcup (\llbracket B \rrbracket_C)^{\curlyvee})^{\curlyvee} \rangle, \\ \llbracket A \to B \rrbracket &=_{df.} \langle \llbracket A \rrbracket_C \cap \llbracket B \rrbracket_P, ((\llbracket A \rrbracket_P)^{\curlyvee} \sqcup (\llbracket B \rrbracket_C)^{\curlyvee})^{\curlyvee} \rangle, \\ \llbracket \neg A \rrbracket &=_{df.} \langle \llbracket A \rrbracket_C, \llbracket A \rrbracket_P \rangle. \end{split}$$

Definition 2.10 (Semantic Entailment). We say that A semantically entails B relative to a model \mathcal{M} if the closure of the combination of A (as premise) and B (as conclusion) consists of only good implications:

$$A \vDash_{\mathcal{M}} B \quad \text{iff}_{df.} \quad \left(\left(\llbracket A \rrbracket_P \right)^{\curlyvee} \sqcup \left(\llbracket B \rrbracket_C \right)^{\curlyvee} \right)^{\curlyvee} \subseteq \mathbb{I}_{\mathcal{M}}.$$

We say that A semantically entails B if $A \vDash_{\mathcal{M}} B$ on all models \mathcal{M} . **NB:** If $A = \{A_1, \ldots, A_n\}$ and $B = \{B_1, \ldots, B_m\}$ are multi-sets of sentences then we read $A \vDash B$ as, for all models \mathcal{M} :

$$A_1, \dots, A_n \vDash_{\mathcal{M}} B_1, \dots, B_m \quad \text{iff}_{df.}$$
$$((\llbracket A_1 \rrbracket_P)^{\curlyvee} \sqcup \dots \sqcup (\llbracket A_n \rrbracket_P)^{\curlyvee} \sqcup (\llbracket B_1 \rrbracket_C)^{\curlyvee} \sqcup \dots \sqcup (\llbracket B_m \rrbracket_C)^{\curlyvee})^{\curlyvee} \subseteq \mathbb{I}_{\mathcal{M}}.$$

2.2 Soundness and Completeness of NM-MS

Axiom: If $\Gamma \vdash_0 \Theta$ then $\Gamma \vdash \Theta$.

$$\begin{array}{c} \overline{\Gamma \vdash \Theta, A} & B, \Gamma \vdash \Theta \\ \hline A \rightarrow B, \Gamma \vdash \Theta \\ \hline \overline{\Lambda \rightarrow B, \Gamma \vdash \Theta} \\ \hline \Gamma, A \& B \vdash \Theta \\ \hline \Gamma, A \& B \vdash \Theta \\ \hline \overline{\Gamma, A \& B \vdash \Theta} \\ \hline A \lor B, \Gamma \vdash \Theta \\ \hline \overline{\Lambda \lor B, \Gamma \vdash \Theta} \\ \hline \overline{\Lambda \lor \Theta, A \lor B} \\ \hline \overline{\Gamma \vdash \Theta, \neg A} \\ \hline \overline{\Gamma \to \Theta, \neg A} \\ \hline \overline{\Gamma \to \Theta, \neg A} \\ \hline \overline{\Gamma \to \Theta, \neg A} \\ \hline \overline{\Gamma \vdash \Theta, \neg A} \\ \hline \overline{\Gamma \to \Theta, \neg A} \\ \hline \overline{\Gamma \vdash \Theta, \neg A} \\ \hline \overline{\Gamma \to \Theta, \neg A} \\ \hline \overline{\Gamma \to \Theta,$$

Definition 2.12 (Base Consequence Relation). A base consequence relation is a subset of **P** that consists of only atoms. *B* is a base consequence relation iff $B \subseteq \mathbf{P}$ and $B \cap \mathcal{P}(\mathcal{L}_0)^2 = B$.

We say that a model $\mathcal{M} = \langle \mathbf{P}, \mathbb{I}, \llbracket \cdot \rrbracket \rangle$ is **fit for** a base consequence relation B iff

$$\forall \langle \Delta, \Lambda \rangle \in B(\Delta \vDash_{\mathcal{M}} \Lambda).$$

We say that Γ semantically entails Θ relative to B iff $\Gamma \vDash_{\mathcal{M}} \Theta$ for all models \mathcal{M} that are fit for B. We write this as $\Gamma \vDash_B \Theta$.

Theorem 2.13 (Soundness). The sequent calculus is sound:

$$\Gamma \vdash_B \Theta \Rightarrow \Gamma \vDash_B \Theta.$$

Theorem 2.14 (Completeness). The sequent calculus is complete:

$$\Gamma \vDash_B \Theta \Rightarrow \Gamma \vdash_B \Theta.$$

I did not introduce semantic clauses for the various \mathfrak{Sf} from NM-MS, but these can also be introduced in straightforward ways and proven sound and complete.

3 Implicational Role Entailment

Earlier remarked that above notions allow us to understand how, for example:

- Premissory role of p is equivalent to conclusory role of $\neg p$
- Conclusory role of $p \to q$ is equivalent to contribution that $\langle \{p\}, \{q\} \rangle$ makes to good implication

In addition, such substitutions could be fully material. Whenever (for arbitrary Γ, Δ), $p, \Gamma \vdash \Delta$ then $q, \Gamma \vdash \Delta$. Formally:

$$\llbracket p \rrbracket_P \subseteq \llbracket q \rrbracket_C.$$

But as with negation premissory and conclusory roles can be linked in interesting ways. Can develop this notion formally.

Definition 3.1 (Implication Role Entailment). Given a consequence relation \succ . Write:

$$A^P, B^C \Rightarrow C^P, D^C,$$

to mean:

$$\forall (\Gamma, \Delta \subseteq \mathcal{L})(A, \Gamma \succ \Delta \text{ and } \Gamma \succ \Delta, B, \text{ then } C, \Gamma \succ \Delta, D)$$

NB: for simplicity two sentences on LHS and RHS, but this limit is for ease of comprehension (not in the actual formal details)

Theorem 3.2. In the implicational phase space semantics, this idea can be implemented straightforwardly:

$$A^P, B^C \Rightarrow C^P, D^C,$$

iff

$$\llbracket A \rrbracket_P \cap \llbracket B \rrbracket_C \subseteq \left(\left(\llbracket C \rrbracket_P \right)^{\curlyvee} \sqcup \left(\llbracket D \rrbracket_C \right)^{\curlyvee} \right)^{\curlyvee}$$

Some interesting facts/ideas:

• Negation flip-flops $\cdot^{P/C}$:

$$A^P, \Gamma \Rightarrow \Delta \text{ iff } \neg A^C, \Gamma \Rightarrow \Delta$$

• We can define a second negation \sim that flip-flops across the turnstile:

 $A^P, \Gamma \Rightarrow \Delta \text{ iff } \Gamma \Rightarrow \Delta, \sim A^P$

Defined as:

$$\llbracket \sim A \rrbracket =_{df_{-}} \langle (\llbracket A \rrbracket_{C})^{\curlyvee}, (\llbracket A \rrbracket_{P})^{\curlyvee} \rangle.$$

• Containment shows up as instances of excluded middle:

$$\{\} \Rightarrow A^P, A^C$$

Likewise: containment says that the internal consequence relation \succ is a part of the external consequence relation \Rightarrow .

• Transitivity shows up as instances of principle of non-contradiction:

$$A^P, A^C \Rightarrow \emptyset$$

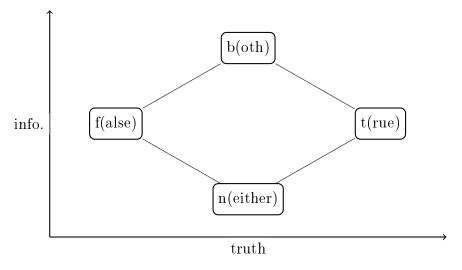
Likewise: transitivity says that the external consequence relation \Rightarrow is a part of the internal consequence relation \succ .

- The relationship between reflexivity and transitivity is conflation. Transitivity is the conflation of reflexivity.
- We might be curious about various "fragments" of \Rightarrow , i.e.:

$$A^{P} \Rightarrow B^{P} A^{C} \qquad \Rightarrow B^{C}$$
$$A^{P}, B^{C} \Rightarrow C^{P}, D^{C},$$

3.1 \Rightarrow on 3-valued and 4-value semantics

The basic idea is this. If we have the standard four truth values: $\{t, f, b, n\}$ they form what is called a bilattice:



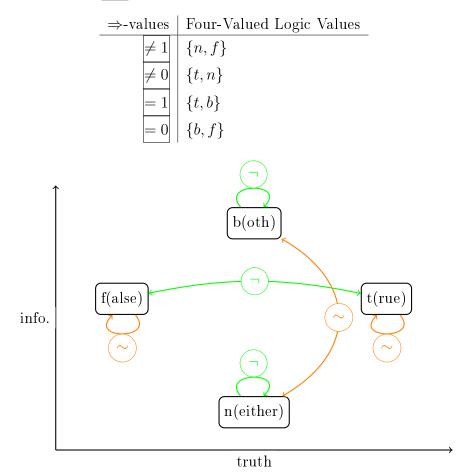
the \leftrightarrow -lattice is a truth-ordering and the \uparrow lattice is an information ordering.

Definition 3.3 (ST-Entailment). $\Gamma \vDash_{ST} \Delta$ iff it is not possible (=there is no valuation) where all $\gamma \in \Gamma$ assigned 1 (true or both) and all $\delta \in \Delta$ assigned 0 (false or both).

This is the \succ over which we examine \Rightarrow .

$$\begin{array}{c|c} \neq 1 & \neq 0 & = 1 & = 0 \\ \hline A^P & B^C & \Rightarrow_{ST} & C^P & D^C \end{array}$$

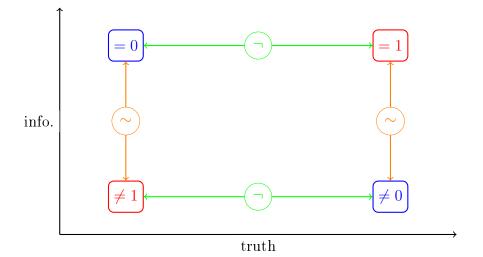
But, I wrote $\{t, f, n\}$ not $\{1, 0, \frac{1}{2}\}$. Next, we understand $\{\neq 1, \neq 0, = 1, = 0\}$ as the following values (this should be understand as setting up a correspondence, i.e. $\neq 1 | \{t, b\}$ means that = 1 means that the truth-value of the sentence is in $\{t, b\}$:



Here's a chart that more or less proves the claims:

\Rightarrow -values	Four-Valued Logic	Conflated Values	$Conflated \rightarrow$
$\neq 1$	$\{n, f\}$	$\{b, f\}$	= 0
$\neq 0$	$\{t,n\}$	$\{t,b\}$	=1
= 1	$\{t, b\}$	$\{t,n\}$	$\neq 0$
= 0	$\{b, f\}$	$\{n, f\}$	$\neq 1$

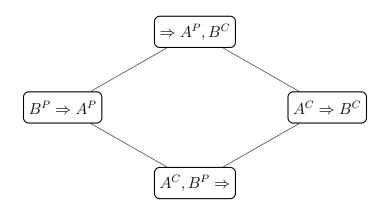
And a visualization of that chart.



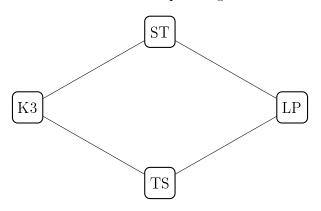
3.1.1 Some Results:

Some important facts:

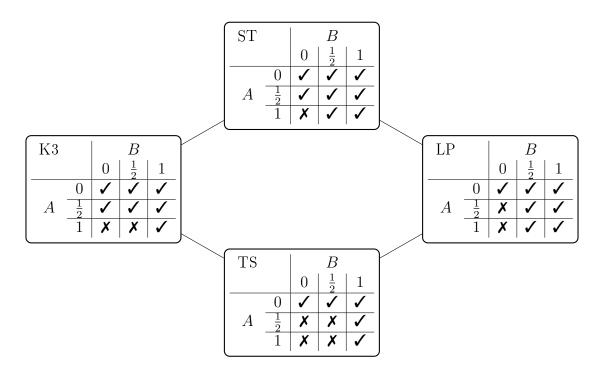
- **ST-Valid:** $\Gamma \vDash_{ST} \Delta$ iff there are no interpretations where $v(\gamma) = 1$ for all $\gamma \in \Gamma$ and $v(\delta) = 0$ for all $\delta \in \Delta$.
- **TS-Valid** $\Gamma \vDash_{TS} \Delta$ iff there are no interpretations where $v(\gamma) \ge 0$ for all $\gamma \in \Gamma$ and $v(\delta) \le 1$ for all $\delta \in \Delta$.
- **LP-Valid:** $\Gamma \vDash_{LP} \Delta$ iff there are no interpretations where $v(\gamma) \ge 0$ for all $\gamma \in \Gamma$ but $v(\delta) = 0$ for all $\delta \in \Delta$.
- **K3-Valid:** $\Gamma \vDash_{K3} \Delta$ iff there are no interpretations where $v(\gamma) = 1$ for all $\gamma \in \Gamma$ and $v(\delta) \leq 1$ for all $\delta \in \Delta$.



In fact, this is because each of the following are equivalent to ST, K3, LP, and TS, respectively, as can be seen from the corresponding truth tables:



Here are the four truth-tables (they correspond to valuations which are ruled out/permitted by each of the corresponding \Rightarrow statements; notice that these tables verify that the appropriate \Rightarrow statements are equivalent to each of these logics); it is also easy from the truth tables to see the inclusion/exclusion relation (as you move upward there are fewer countermodels):



To summarize

- The "conclussory"-fragment of \Rightarrow is equivalent to LP.
- The "premissory"-fragment of \Leftarrow is equivalent to K3 (in principle this just means we have to invert things when converting it into the "internal" consequence relation of K3).
- The "theorems" of \Rightarrow (i.e. empty left-hand-side) are equivalent to ST.
- The "counter-theorems" of \Leftarrow (i.e. empty right-hand-side) are equivalent to TS.
- K3 and LP are duals (related via \neg)
- ST and TS are conflations (related via \sim)
- Conflation of K3 is K3 and likewise with LP

4 Summary and Reflection

• Implicational Role Semantics involves 3 important constraints:

- 1. implications are basic constituents of semantic picture (from which meaning is constructed)
- 2. to construct sentence meaning we must keep premissory and conclussory roles separated; a sentence makes distinct contributions are premise and conclusion
- 3. Sentence meaning individuated by contribution to good implication; if two sentences make the same contributions they are equivalent
- Essential to this structure are:
 - 1. Commutative monoid of implicational space
 - 2. Privileged subset (of good implications) and Υ -function which at once encodes:
 - Subjunctive Robustness
 - Contribution to good implication
- The logic of premissory role is K3-ish (i.e. "gappy").
- The logic of conclusory role is LP-ish (i.e. "glutty")
- These last two facts tell us something about the logic of (and perhaps affinities between):
 - Premises, truthmakers, commitments to assert
 - Conclusions, falsemakers, preclusions from entitlement to reject

Why are the former gappy and the latter glutty?